王瑞霞,博士,副教授,硕士生导师,2012年毕业于山西大学数学科学学院。主要从事有向图的结构的研究。在有向图的结构,有向图的哈密尔顿圈等方面上取得系列成果,部分成果被有向图的专著收录。解决了四个比较困难的公开问题,其中一个源于Bang-Jensen和Gutin所编撰的有向图的专著。主持并参与多项国家自然科学基金以及山西省基础研究计划项目。在国际学术期刊上发表论文三十余篇,其中SCI检索27篇。获山西省科技进步三等奖一项。
[1] Ruixia Wang, Linxin Wu. Cycles of many lengths in balanced bipartite digraphs on dominating and dominated degree conditions. Discussiones Mathematicae Graph Theory, 2024, 44: 245-267.
[2] Ruixia Wang, Zhiyi Zhou. Degree sum condition on distance 2 vertices for hamiltonian cycles in balanced bipartite graphs. Discrete Mathematics, 2023, 346: 113446.
[3] Ruixia Wang. A note on dominating pair degree condition for hamiltonian cycles in balanced bipartite digraphs. Graphs and Combinatorics, 2022, 38: #13.
[4] Ruixia Wang, Linxin Wu, Wei Meng. Extremal digraphs on Meyniel type condition for hamiltonian cycles in balanced bipartite digraphs. Discrete Mathematics and Theoretical Computer Science, 2021, 23(3): #8.
[5] Ruixia Wang. Extremal digraphs on a degree condition for hamiltonian cycles in balanced bipartite digraphs. Journal of Graph Theory, 2021, 97(2): 194-207.
[6] Ruixia Wang. Hamiltonian cycle problem in strong k-quasi-transitive digraphs with large diameter. Discussiones Mathematics Graph Theory, 2021, 41(2): 685-690.
[7] Ruixia Wang, Jingfang Chang, Linxin Wu. A dominated pair condition for a digraph to be Hamiltonian. Discrete Mathematics, 2020, 343: 111794.
[8] Ruixia Wang, Linxin Wu. A dominating pair condition for a balanced bipartite digraph to be Hamilton. Australasian Journal of Combinatorics, 2020, 77: 136-143.
[9] Ruixia Wang. Critical kernel imperfect problem in generalitions of bipartite tournaments. Graphs and Combinatorics, 2019, 35: 669-675.
[10] Ruixia Wang. A sufficient condition for a balanced bipartite digraph to be hamiltonian. Discrete Mathematics and Theoretical Computer Science, 2017, 19(3): #11.
[11] Ruixia Wang, Jing Guo. A note on cycles of maximum length in bipartite digraphs. Australasian Journal of Combinatorics, 2017, 67(1):1-10.
[12] Ruixia Wang, Hui Zhang. Hamiltonian paths in k-quasi-transitive digraphs. Discrete Mathematics, 2016, 339: 2094-2099.
[13] Ruixia Wang, Shiying Wang. Kings in strong tournaments. Ars Combinatorics, 2016, 126: 351-358.
[14] Ruixia Wang. (k+1)-kernels and the number of k-kings in k-quasi-transitive digraphs, Discrete Mathematics,2015, 338(1):114-121.
[15] Ruixia Wang. (k-1)-kernels in strong k-transitive digraphs. Dicussiones Mathematics Graph Theorey, 2015, 35(2): 229-235.
[16] Ruixia Wang,Wei Meng. k-Kings in k-quasi-transitive digraphs. Journal of Graph Theory, 2015,79(1): 55-62.
[17] Ruixia Wang. Cycles in 3-anti-circulant digraphs. Australasian Journal of Combinatorics, 2014, 60(2): 176-186.
[18] Ruixia Wang. A conjecture on 3-anti-quasi-transitive digraphs. Discrete Mathematics, 2014, 322: 48–52.
[19] Ruixia Wang, Shiying Wang. A sufficient condition for graphs to be k-optimal. Discrete Applied Mathematics, 2013, 161: 3048–3053.
[20] Ruixia Wang, Shiying Wang. Underlying graphs of 3-quasi-transitive digraphs and 3-transitive digraphs. Discussiones Mathematicae Graph Theory, 2013, 33: 429–435.
[21] Ruixia Wang. A conjecture on k-transitive digraphs. Discrete Mathematics, 2012,312(8): 1458-1460.
[22] Ruixia Wang, Aimin Yang, Shiying Wang. Kings in locally semicomplete digraphs. Journal of Graph Theory, 2010, 63(4): 279-287.
[1]多部有向图中长圈的存在性问题,山西省基础研究计划项目,2022.01-2024.12,主持.
[2]类竞赛图的结构性质研究,国家自然科学基金青年基金,2015.01-2017.12,主持.
[3]超网络上传染病传播动力学研究,国家自然科学基金面上项目,2024.08-2028.12,参与.
[4]网络结构容错性度量研究,山西省基础研究计划项目,2024.01-2026.12,参与.
[5]半完全多部有向图的圈结构研究,山西省基础研究计划项目2023.01-2025.12,参与.