师资队伍

李瑞娟

博士 ,教授,博士生导师

邮箱:ruijuanli@sxu.edu.cn

研究方向:图论及其应用

个人简介

李瑞娟,博士,山西大学数学科学学院教授,博士生导师,毕业于德国亚琛工业大学。主要从事图论领域中的结构图论、有向图、极值图论等方向的理论研究,多次主持国家自然科学基金和省部级的项目。发表学术论文50余篇,撰写专著2部。

学术论文

[1] Ruijuan Li, Yaoxiang Di, Ruiping Zhang, Zhaohong Niu. Hamiltonian cycles avoiding prescribed arcs in semicomplete digraphs, Discrete Applied Mathematics, 360: 451-458, 2025.

[2] 张新鸿, 代潇娜, 李瑞娟. 有向图的外独立双罗马控制, 高校应用数学学报, 38(4): 491-500, 2023.

[3] Xinhong Zhang, Yali Guo, Ruijuan Li. The Roman domination of Kautz digraphs and generalized Kautz digraphs. Pure and Applied Functional Analysis, 8(4): 1223-1233, 2023.

[4] 李瑞娟, 陈淑凤. 给定P3的无桥图的定向直径. 应用数学学报, 45(3) : 355-368, 2022.

[5] Ruijuan Li, Xiaoting An, Xinhong Zhang. The (1,2)-step competition graph of a hypertournament. Open Mathematics, 19: 483-491, 2021.

[6] 张新鸿, 郭燕, 李瑞娟, 张越. 正则多部竞赛图的竞争指数. 应用数学学报, 44(3) : 330-339, 2021.

[7] Ruijuan Li, Juanjuan Liang, Xinhong Zhang, Yubao Guo. Vertex-disjoint cycles in local tournaments. Discrete Mathematics, 343(12): 112127, 2020.

[8] Ruijuan Li, Juanjuan Liang. The second out-neighborhood for local tournaments. Open Mathematics, 18: 270-283, 2020.

[9] 李瑞娟, 史杰. 准传递定向图上的Seymour点. 高校应用数学学报, 35(2): 245-252, 2020.

[10] Ruijuan Li, Bin Sheng. The second neighbourhood for bipartite tournaments. Discussiones Mathematicae Graph Theory, 39(2): 555-565, 2019.

[11] Ruijuan Li, Bin Sheng. The second neighbourhood for quasi-transitive oriented graphs. Acta Mathematica Sinica, English Series, 34(9): 1391-1402, 2018.

[12] Ruijuan Li, Xiaoting An, Xinhong Zhang. The independence number of the competition graph of a bipartite tournament. Ars Combinatoria, 136: 235-245, 2018.

[13] Ruijuan Li, Tingting Han. Arc-disjoint hamiltonian cycles in round decomposable locally semicomplete digraphs. Discussiones Mathematicae Graph Theory, 38(2): 477-490, 2018.

[14] Xinhong Zhang, Ruijuan Li, Xiaoting An. The hamiltonicity on the competition graphs of round digraphs. Applied Mathematics: a Journal of Chinese Universities, 33(4): 409-420, 2018.

[15] Ruijuan Li, Tingting Han. Arc-disjoint hamiltonian paths in non-round decomposable local tournaments. Discrete Mathematics, 340(12): 2916-2924, 2017.

[16] 李瑞娟, 韩婷婷. 正圆有向图中的弧不相交的Hamilton路和圈. 高校应用数学学报, 32(4): 487-492, 2017.

[17] Xinhong Zhang, Ruijuan Li. The (1,2)-step competition graph of a pure local tournament that is not round decomposable. Discrete Applied Mathematics, 205: 180-190, 2016.

[18] 李瑞娟, 刘冬婷. 正则多部竞赛图的控制图. 应用数学学报, 39(4): 555-561, 2016.

[19] Ruijuan Li, Xinhong Zhang, Qiaoping Guo. Generalizing vertex pancyclic and k-ordered graphs. Graphs Combinatorics, 32: 1539-1554, 2015.

[20] Ruijuan Li, Xinhong Zhang, Shengjia Li, Qiaoping Guo, Yubao Guo, The H-force set of a hypertournament, Discrete Applied Mathematics, 169: 168-175, 2014.

[21] Xinhong Zhang, Ruijuan Li, Shengjia Li. H-force sets of locally semicomplete digraphs. Discrete Applied Mathematics, 160: 2491-2496, 2012.

[22] Qiaoping Guo, Shengjia Li, Ruijuan Li. The structure of 4-strong tournaments containing exactly three out-arc pancyclic vertices. Journal of Graph Theory, 71(3): 260-277, 2012.

[23] Ruijuan Li, Shenjia Li, Yubao Guo. Degree conditions on distance 2 vertices to imply k-ordered Hamiltonian. Discrete Applied Mathematics, 158: 331-339, 2010.

[24] Ruijuan Li. A Fan-Type result on k-ordered graphs. Information Processing Letters, 110: 651-654, 2010.

[25] Ruijuan Li, Shenjia Li, Jinfeng Feng. The number of vertices whose out-arcs are pancyclic in a 2-strong tournament. Discrete Applied Mathematics, 156: 88-92, 2008.

[26] Ruijuan Li, Xinhong Zhang, Wei Meng. A sufficient condition for a digraph to be positive-round. Optimization, 57: 345-352, 2008.

[27] Shengjia Li, Ruijuan Li, Jinfeng Feng. The graphs satisfying conditions of Ore's type. Australasian Journal of Combinatorics, 37: 27-32, 2007.

[28] Shengjia Li, Ruijuan Li, Jinfeng Feng. An efficient condition for a graph to be Hamiltonian, Discrete Applied Mathematics. 155: 1842-1845, 2007.

[29] Jinfeng Feng, Shengjia Li, Ruijuan Li. An s-strong tournament with s≥3 has s+1 vertices whose out-arcs are 4-pancyclic. Discrete Applied Mathematics, 154: 2609-2612, 2006.

科研项目

[1] 多部竞赛图的圈结构及相关问题研究,山西省基础研究计划面上项目,2024/1-2026/12,10万

[2] 有向图的围长和二次邻域的研究,山西省优秀青年基金,2019/12-2022/9,15万

[3] 局部半完全有向图的分解及相关问题研究,国家自然科学基金青年基金,2015/01-2017/12,22万

[4] 山西省高校“131”领军人才,山西省教育厅,2016/03-2018/08,2万

[5] 2015高校优秀青年学术带头人,山西省教育厅,2015/03-2018/03,10万

[6] 半完全多部有向图中若干问题的研究,山西省基础研究青年基金项目,2013/01-2015/12,3万

[7] 半完全多部有向图中若干问题的研究,山西省回国留学人员科研资助项目,2013/07-2015/12,5万

[8] K序图、竞赛图以及它们的推广,山西省留学回国人员科技活动择优资助项目,2011/11-2012/11,3万

[9] K序图&竞赛图及其推广图,教育部留学回国人员科研启动基金,2011/1-2012/12,4万

[10] 多部竞赛图的研究,国家自然科学基金数学天元基金,2011/1-2011/12,3万

教材与专著

[1] Ruijuan Li. K-ordered graphs & out–arc pancyclicity on digraphs, Verlag Mainz in Aachen, Aachen, 2009.

[2] 李瑞娟. 广义竞赛图的圈和距离, 西安交通大学出版社, 西安, 2019.